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A liquid crystal model for early cell division 

by J.  VERHAS 
Institute of Physics, Technical University, Budapest, Hungary H-152 1 

(Received 6 February 1987; accepted 28 February 1988) 

A variational principle based on the curvature energy of a two dimensional 
liquid crystal membrane is constructed to determine the equilibrium shape of a cell 
with given surface area and volume. A sequence of the forms, calculated numeric- 
ally, displays the process of cell division. 

1. Introduction 
The interesting characteristics of liquid crystals make them important from both 

practical and theoretical points of view. Considerable technological use is made of 
liquid crystals and a number of natural phenomena are explained by the liquid crystal 
nature of one or other of the materials involved in them. Perhaps, biological 
phenomena provide the majority of such examples. Living membranes, which are very 
important in physiology, have many traits which may be understood with the help of 
the theory of liquid crystals. The transformations of the cell membrane of the red 
blood cell [I], pore formation and stability [2], changes in transport behaviour [3], etc., 
are explained in such ways. The balance of edge and curvature energy of a lipid bilayer 
plays an essential role in the model given by Helfrich [4] for vesicle formation. The 
Helfrich model also contributes to our knowledge about the origin of life. In this 
paper, we point out that the curvature energy of a lipid bilayer membrane can govern 
the proliferation of very simple cells having no internal structure or organels. The 
model given here may turn out to be useful when studying the origin of life. 

In the model presented we follow Helfrich [ l ,  4,5] and Frank [6] and suppose that 
the free energy of a deflected membrane is a quadratic function of the two principal 
curvatures. The free energy per unit area is then 

F, = + ~2 - a*)’ + K ~ c ~ c , ,  (1) 

where cI and c2 are the principal curvatures, K, and K ,  are elastic constants and a* 
is the spontaneous curvature. Their actual values depend on the chemical composition 
of the membrane and of the liquids inside and outside, as well as on the temperature, 
the pressure, etc. F, will be referred to as the curvature energy. 

The curvature energy can be the consequence of molecular alignment, but it can 
be explained in a different way as well. During deflection, the areas of the two sides 
of the membrane vary in different ways, so the space for the units will be different on 
the two sides; in consequence the quantity a* can change when the molecular units 
exchange position by chance from one side to the other (thermal motion); this is often 
referred to as the flip-flop motion of the membrane units. 

The proliferation of the rudimentary cells must follow a very simple mechanism 
because they have no organels which could control the processes. The two dimensional 
liquid-crystal line nature of the cell membrane suggests that it could be the 
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1184 J. Verhas 

appropriate explanation. Numerical computations investigating this possibility have 
proved that the minimal value of the curvature energy can belong to the shape of a 
proliferating cell. The series of shapes calculated make sure that a real explanation is 
found. 

2. The mechanism of cell profileration 
The calculations presented here are based on a similar analysis to those in [4,5] 

but a different representation of the variables employed makes the equations easier to 
solve. For the sake of simplicity, surfaces of revolution are taken into account. We 
assume a Cartesian coordinate system in a plane with a curve set in it. If the curve does 
not intersect itself and crosses they axis orthogonally, a smooth surface will be formed 
by revolving the curve about they axis. The shape of the proliferating cell is determined 
by the minimum of the curvature energy at constant volume and constant interfacial 
area. To calculate it, we need the two principal curvatures which are measured in 
meridional and normal sections. Their values are given by 

dcr sin cr 
ds X 

CI = - and c2 = -, 

where s is the arc length of the curve from the bottom to the given point while ci is 
the angle between the tangent of the curve and the x axis (see figure 1.) Using these 
we obtain the curvature energy as 

2nx ds, F, = ~ ~ o ( - + - - a * ~ + K , - - -  do! sinci sincr dcr 
ds x x ds 1 (3) 

where the integration is extended from the bottom of the curve to the top. The 
equilibrium outline of the cell is determined by the function a(s), minimizing the 
functional in equation (3) at constant volume and constant surface area. The function 
x(s)  is determined by 

dx 
ds 

= COSQ. - 

The surface area and the volume are given as 

Q = i 2 n x d s  and V = nx’sinads.  i 
(4) 

Figure 1. An explanation for the quantities x, y ,  s and a, which are used in the equations. 
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A model for cell division 1185 

The desired functions are determined by the methods of variational calculus. The 
lagrangian for the constrained variational problem is 

] 271x du sino: sina da 
- + - - a* 
ds x 

+ 1,271~ + A,nx2sinu + p ( s )  (6)  

Here A,, 1, and p(s)  are lagrangian multiplers. The physical meaning of 1, is analogous 
to the ordinary surface tension and ,I2 is the underpressure inside the cell. The Euler 
equations are 

du 1 
x2cosu + - sinu, 

d2u x-  + cosu - - -sinucosa = - 
ds2 ds x 4K0 471& 

2nK0 ds ’ 
sinu ’ 1, A2 

KO KO 
($ - u*J - (x) + - + -xsinu = -- 

dx 
ds 
- = cosu. J 

(7) 

Because the arc length s does not appear explicitly in the lagrangian and the upper 
limit of the integral in equation (3) is arbitrary, a first integration of Euler’s equations 
can be obtained in general form as 

a -  a -  ds ds 

(see, for example, [7]) which now reads 

Replacing the second equation in (7) and eliminating the auxiliary function p(s) we 
obtain the system of differential equations to be solved as 

d2u 

dx 
ds 
_ -  - cosa. 

The task of finding an exact analytical solution is too hard, so we have to approach 
the result from several sides, with several methods. First we note that the functions 

S S 
a = -, x = rsin-, 

r r 

give a solution describing a sphere, and to which the condition 
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1186 J. Verhas 

belongs. Here r is an arbitrary constant, the radius of the sphere. As the second step, 
we study forms slightly different from a sphere. The solution is sought in the implicit 
form 

where the functions V(U) and u(u) are small. Linearization of the equations in (10) 
yields 

s = r[u + v(u)], x = rsinu[l + #(a)], (13) 

dv du 
du d u  
- -  - u + - tgu, 

(14) . ,  
d2v cos2 u 

Eliminating v(u) and introducing the new independent variable 

z =  - cos u,  
we find 

d2u 2 + 2z2 du 
(1 - z ) z - - -  z dz 

This equation has a regular solution in the closed interval - 1 5 z 5 1 if, and only 
if. 

A2r3 
- + ra* = n(n + I), n = 2, 3, . . . 
4% 

The first proper value is 6 and the solution is 

u = 1 + 3z2 = 4 - 3sin2u. 

The linearized equations do not answer the question as to whether the elongated 
shapes or the flattened ones are preferred. Using a higher order approximation, 
Deuling and Helfrich [5] proved that the elongated shapes are preferred if the 
inequality 

39 
a*r > - - 

23 (18) 

holds. 
On the basis of these results, we can describe the early stage of proliferation. 

Osmotic processes cause some underpressure inside the microsphere. When the 
underpressure reaches the value given by equation (1 6) the sphere collapses and 
becomes elongated if the inequality (1 8) holds. The validity of the inequality can result 
from the flip-flop motion of the molecules in the bilayer. The curvature energy of a 
sphere depends on the material constant a* and has a minimum if Q* equals 2/r. It is 
obvious that transfer of the molecules between the outer and the inner side of the 
membrane makes the value of a* tend to 2/r. The process of increasing from inside 
has a different effect: it decreases a*. The result of the two tendencies can make the 
inequality ( I  8) valid. If the flip-flop motion has a stronger effect, the value of a* will 
be just below 2/r, which turns out to be important. 

To learn more about the solutions of equations (10) we had to turn to numerical 
methods. Before tackling this task some transformations of the equations were useful; 
we also needed certain initial conditions. Equations (10) contain two auxiliary con- 
stants, the values of which are unknown. A similarity transformation reduces the 
number of unknown quantities in the equations. We introduce new variables x’, s’, 
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A model for cell division 1187 

A ,  K, defined by 

where D is suitably chosen so that the equality 

21, + 12D = 0 (20) 

holds. Equations (8) become 

d2a 

dx’ 
ds 

= cosa. 

Expediency suggests that the calculations are started at the waist line, as the equations 
are singular both at the bottom and the top of the vesicle. Other removable singularities 
are present where the tangent of the outline is parallel to the axis of the symmetry, 
especially at the waist. The latter can be avoided if we choose the initial value 

$lo = 
J{(i - A)’ - K(l - x’) . I 

K K 

5 
5 

0 0 
X 

K K 
5 

5 

0 0 

Figure 2. The reduced underpressure inside the dividing cells versus the reduced waist-radius 
at different spontaneous curvatures, A .  The shaded areas are forbidden. 
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1188 J. Verhas 

Figure 3. Views of the proliferating cells. 

Hence, 
(1 - AX$ 
x{2(1 - xi) K <  

The numerical calculations were performed by the Runge-Kutta method. The 
point of the computations is the fact that for a proper value of K the curve arrives at 
the symmetry axis perpendicularly, otherwise it curves outward or inward. The proper 
values were approximated by nested intervals. The inequality (23) shows the feasible 
values of K .  In the limiting case, when the equality in (23) holds, the slim forms join 
to the bulbous ones, to which the negative and the positive signs occurring in equation 
(22) respectively belong. The computations were performed with the values of A = 0, 
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A model for cell division 1189 

o m 0 0  1.000 0.994 0.974 0.942 0.904 

o o o ( 1 0  0.894 0.867 0.833 0.804 0.758 

0.72 7 0.707 0.696 0.698 

888 0.701 0.705 0.706 

Figure 4. The outlines of the proliferating cells with the ratio of the actual volume to the 
maximal value with the same envelope. 

1/2, 1, 3/2, 2 and also A = 3, 5, 10 and 100. The computations showed that the set 
of the proper values do not denote a way for proliferation if the quantity A is too 
small. The critical value is slightly smaller than 1.8. The proper values are plotted 
against the width of the waist in figure 2; the data used in the calculation of the points 
may be obtained from the author. Figure 3 shows the views of proliferating micro- 
spheres. Figure 4 shows their outline, the quantity V/V,  denotes the ratio of the 
volume to the maximal value in the same envelope. These values, for the slimmest 
ones, are about 1/$, which corresponds to two smaller spheres. 
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1190 J. Verhas 

3. Conclusion 
The result of our investigation is that proliferation is the natural behaviour of a 

two dimensional liquid-crystalline cell membrane and no further regulation is needed. 
A proper balance of the flip-flop motion of the molecules and the growth from inside 
demonstrate the quantitative conditions necessary for it. The possible forms in our 
theory are static in contrast to those given by the theory of Rashevsky [8] or by that 
of Sorensen [9]; in consequence the speed of cell division is governed by that of growth 
or by osmotic processes. Nevertheless, the modern cell cannot follow the mechanism 
proposed here since, first of all, they are set in a tissue or have rigid walls. On the other 
hand, they have rather complex internal structures the replication of which cannot be 
ruled in such a simple way so that our idea may be essentially valid for the division 
of some internal part of a cell the duplication of which can initiate a fission in a 
modern cell. 
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